Python enable us to perform advanced operation in very expressive way, meanwhile covers many users’ eyes from underlying implement details. If the performance of your application plays a critical role, please always keep in mind the time complexity of these common operations.

The following table is an important cheat sheet to memorize to keep your applications behave. Python official page

List

Operation Average Case Amortized Worst Case
Copy O(n) O(n)
Append O(1) O(1)
Insert O(n) O(n)
Get Item O(1) O(1)
Set Item O(1) O(1)
Delete Item O(n) O(n)
Iteration O(n) O(n)
Get Slice O(k) O(k)
Del Slice O(n) O(n)
Set Slice O(k+n) O(k+n)
Extend O(k) O(k)
Sort O(n log n) O(n log n)
Multiply O(nk) O(nk)
x in s O(n)  
min(s), max(s) O(n)  
Get Length O(1) O(1)

collections.deque

Operation Average Case Amortized Worst Case
Copy O(n) O(n)
append O(1) O(1)
appendleft O(1) O(1)
pop O(1) O(1)
popleft O(1) O(1)
extend O(k) O(k)
extendleft O(k) O(k)
rotate O(k) O(k)
remove O(n) O(n)

set

Operation Average case Worst Case notes
x in s O(1) O(n)  
Union s t O(len(s)+len(t))  
Intersection s&t O(min(len(s), len(t)) O(len(s) * len(t)) replace “min” with “max” if t is not a set
Multiple intersection s1&s2&..&sn (n-1)*O(l) where l is max(len(s1),..,len(sn))    
Difference s-t O(len(s))    
s.difference_ update(t) O(len(t))  
Symmetric Difference s^t O(len(s)) O(len(s) * len(t))  
s.symmetric_difference_update(t) O(len(t)) O(len(t) * len(s))  

dict

Operation Average Case Amortized Worst Case
Copy O(n) O(n)
Get Item O(1) O(n)
Set Item O(1) O(n)
Delete Item O(1) O(n)
Iteration O(n) O(n)